If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-45a^2+250a+120=0
a = -45; b = 250; c = +120;
Δ = b2-4ac
Δ = 2502-4·(-45)·120
Δ = 84100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{84100}=290$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(250)-290}{2*-45}=\frac{-540}{-90} =+6 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(250)+290}{2*-45}=\frac{40}{-90} =-4/9 $
| 170-4x=150-3.5x | | 13-3/2x=47 | | -9=x-4x | | 9-3(2x-1)+4x=10 | | 2(2-2/3y)+6y=-10 | | 2/5n+1/10=1/2n+2 | | -11=2-6x+5 | | √x+2-15=-3 | | (3-7i)+(6+2i)=0 | | –4(p+1)=–2(8–2p) | | 15-(3x-4)=2*(x-19)-3 | | 34x+1,286x-71=32(40x+57) | | -(3z+5)=6z-3(3z+2) | | C(k)=0.11k+15 | | 5/6=7/12+x | | 8+1/2(6x+12)=10 | | 31/4x+5/6=7/12 | | 0=110-1/2p | | 5=3(x–2) | | 6(x-1)^2=24 | | 5=-3a+2a | | 3z÷7-1=9 | | 4x+5=-4+2x+13 | | (v+3)^2=12 | | 7a-(4-a)=20 | | 2(x-5)+6=2 | | –50=–2(a+3) | | 7t+3=7t | | -17=3p-6-2 | | -4(x+3)-44=2-22 | | (v-3)^2=12 | | -7=n+1-3n |